書籍詳細

書籍詳細




洋書

脳ネットワーク解析の基礎

Fundamentals of Brain Network Analysis

Reprint

Fornito, Alex (EDT)   Zalesky, Andrew (EDT)   Bullmore, Edward T. (EDT)

Academic Pr 2016/03
494 p. illustrations (chiefly color), portraits ; 25 cm   
装丁: Hrd    装丁について
テキストの言語: ENG    出版国: US
ISBN: 9780124079083
KCN: 1021060002
紀伊國屋書店 選定タイトル
標準価格:¥14,732(本体 ¥13,393)   
Web販売価格あり    Web販売価格について

為替レートの変動や出版社の都合によって、価格が変動する場合がございます。

この商品は提携先の海外出版社在庫からの取り寄せとなります。品切れの場合、恐れ入りますがご了承下さい。

納期について
DDC: 612.82
KDC: G70 神経内科学・神経科学
G48 放射線医学・画像診断
関連書リスト: SB2812B エルゼビア社 心理学・神経科学 関連書 特集
SB2855A 神経科学 関連書 特集
SB2892C 学術洋書 在庫特価キャンペーン 2017
ND1305
EP1213
ご購入を希望される方は、
下のリンクをクリックしてください。

Annotation

Offers an accessible, practical and comprehensive introduction to the fundamental principles and practices of neuroimaging connectomics.

Full Description

Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization.

Table of Contents

1. An introduction to brain networks 2. Nodes and edges 3. Connectivity matrices and brain graphs 4. Connectivity degree and strength 5. Centrality and hubs 6. Components, cores and clubs 7. Paths, efficiency and diffusion 8. Motifs, small worlds and network economy 9. Modularity 10. Null models 11. Statistical connectomics