書籍詳細

書籍詳細




洋書

データのシンプル化:オープンソース・ツールで情報を手なずける

Data Simplification : Taming Information with Open Source Tools

Berman, Jules J.

Morgan Kaufmann Pub 2016/03
398 p. 23 cm   
装丁: Pap   
版表示など: pap.    装丁について
テキストの言語: ENG    出版国: US
ISBN: 9780128037812
KCN: 1024685068
紀伊國屋書店 選定タイトル
標準価格:¥8,836(本体 ¥8,033)   
Web販売価格あり    Web販売価格について

為替レートの変動や出版社の都合によって、価格が変動する場合がございます。

この商品は提携先の海外出版社在庫からの取り寄せとなります。品切れの場合、恐れ入りますがご了承下さい。

納期について
DDC: 004
KDC: F88 データベース
関連書リスト: SB2761 データサイエンス
SB2849 データサイエンス 2017
ご購入を希望される方は、
下のリンクをクリックしてください。

Annotation

Provides data scientists, from every scientific discipline, with the methods and tools to simplify their data for immediate analysis or for long-term storage, in a form that can be readily repurposed or integrated with other data.

Full Description

Data Simplification: Taming Information With Open Source Tools addresses the simple fact that modern data is too big and complex to analyze in its native form. Data simplification is the process whereby large and complex data is rendered usable. Complex data must be simplified before it can be analyzed, but the process of data simplification is anything but simple, requiring a specialized set of skills and tools. This book provides data scientists from every scientific discipline with the methods and tools to simplify their data for immediate analysis or long-term storage in a form that can be readily repurposed or integrated with other data. Drawing upon years of practical experience, and using numerous examples and use cases, Jules Berman discusses the principles, methods, and tools that must be studied and mastered to achieve data simplification, open source tools, free utilities and snippets of code that can be reused and repurposed to simplify data, natural language processing and machine translation as a tool to simplify data, and data summarization and visualization and the role they play in making data useful for the end user.

Table of Contents

1. The Simple Life 2. Structuring Text 3. Indexing Text 4. Understanding Your Data 5. Identifying and Deidentifying Data 6. Giving Meaning to Data 7. Object-oriented data 8. Problem simplification