深共晶溶媒:合成・特性・応用Deep Eutectic Solvents Synthesis, Properties, and Applications : Synthesis, Properties, and Applications

電子書籍 Dummy
個人向け

深共晶溶媒:合成・特性・応用Deep Eutectic Solvents Synthesis, Properties, and Applications : Synthesis, Properties, and Applications

1

Ramón, Diego J. (EDT)/Guillena, Gabriela (EDT)

Wiley-VCH 2019/10
テキストの言語: ENG 出版国: DE
ISBN: 9783527345182
KNPID: EY00366262

販売価格¥24,476(本体 ¥22,251) 

為替レートの変動や出版社の都合によって、価格が変動する場合がございます。

KDC:
F54 有機化学(有機合成・天然物)

ファイルフォーマット:PDF形式
ファイルサイズ:13.89MB
デバイス:iPhone、iPod touch、iPad、Android、Windows、Mac OS X

ご購入を希望される方は、
下のリンクをクリックしてください。

To_buy_link

Full Description

A useful guide to the fundamentals and applications of deep eutectic solvents

Deep Eutectic Solvents contains a comprehensive review of the use of deep eutectic solvents (DESs) as an environmentally benign alternative reaction media for chemical transformations and processes. The contributors cover a range of topics including synthesis, structure, properties, toxicity and biodegradability of DESs. The book also explores myriad applications in various disciplines, such as organic synthesis and (bio)catalysis, electrochemistry, extraction, analytical chemistry, polymerizations, (nano)materials preparation, biomass processing, and gas adsorption.

The book is aimed at organic chemists, catalytic chemists, pharmaceutical chemists, biochemists, electrochemists, and others involved in the design of eco-friendly reactions and processes. This important book:

-Explores the promise of DESs as an environmentally benign alternative to hazardous organic solvents
-Covers the synthesis, structure, properties (incl. toxicity) as well as a wide range of applications
-Offers a springboard for stimulating critical discussion and encouraging further advances in the field

Deep Eutectic Solvents is an interdisciplinary resource for researchers in academia and industry interested in the many uses of DESs as an environmentally benign alternative reaction media.

Table of Contents

Preface xiii

1 Synthesis and Properties 1 Karine De Oliveira Vigier and Francois Jerome

1.1 Introduction 1

1.2 Synthesis 2

1.3 Properties 4

1.3.1 Freezing Point (Tf) 4

1.3.2 Density 5

1.3.3 Viscosity 11

1.3.4 Ionic Conductivity 16

1.3.5 Polarity 19

1.3.6 Surface Tension 19

1.4 Summary and Conclusions 21

References 21

2 Structure and Implications 25 Oliver S. Hammond and Karen J. Edler

2.1 Introduction 25

2.2 Nanostructure of DES 26

2.2.1 Complex Ion Model 26

2.2.2 An Extended Hydrogen Bond Network Model: “Alphabet Soup” 27

2.2.3 Non‐cholinium DES 36

2.3 Conclusions and Implications 38

Abbreviations 40

References 40

3 Toxicity and Biodegradability of Deep Eutectic Solvents and Natural Deep Eutectic Solvents 43 Zhen Yang

3.1 Introduction 43

3.2 Toxicity to Microorganisms 44

3.2.1 Toxicity to Bacteria 44

3.2.2 Toxicity to Other Microorganisms 47

3.3 Toxicity to Animals 48

3.3.1 In Vitro Toxicity Tests on Vertebrates and Invertebrates 48

3.3.2 Cytotoxicity 49

3.3.3 In Vivo Acute Toxicity Tests and Pharmacokinetics 53

3.4 Toxicity to Plants 55

3.5 Biodegradability 56

3.6 Summary and Conclusions 57

Abbreviations 58

References 59

4 Natural Deep Eutectic Solvents: From Their Discovery to Their Applications 61 Henni Vanda, Robert Verpoorte, Peter G. L. Klinkhamer, and Young H. Choi

4.1 Introduction 61

4.2 Natural Deep Eutectic Solvents is a Concept Based on How Physicochemical Features Could Be Used for Biological Functions 63

4.3 Extraction and Solubilization of Non‐water‐Soluble Metabolites 66

4.4 Solvents for Macromolecules 69

4.4.1 Application of ILs and DES to Macromolecules 69

4.4.2 Recent NADES Application for DNA, RNA, and Proteins 70

4.5 Application to Enzyme Reactions 75

4.6 Pharmaceutical Applications 76

4.7 Perspective of NADES 76

Abbreviations 79

References 79

5 Hydrophobic Deep Eutectic Solvents 83 Samah E.E. Warrag and Maaike C. Kroon

5.1 Introduction 83

5.2 Physiochemical Properties of Hydrophobic DESs 84

5.2.1 Density 85

5.2.2 Viscosity 86

5.3 Thermal Stability Window 86

5.4 Applications of Hydrophobic DESs 87

5.4.1 The Extraction of Fatty Acids and Biomolecules from Water 87

5.4.2 The Removal of Transition Metal Ions from Water 89

5.4.3 Impregnation in Membranes 90

5.4.4 The Removal of Pesticides from Water 90

5.4.5 CO2 Capture 90

5.5 Prediction of the Hydrophobic DESs Phase Behavior 91

5.5.1 The Use of PC‐SAFT 91

5.6 Outlook and Recommendations 92

Abbreviations 92

References 93

6 Deep Eutectic Solvents: Exploring Their Role in Nature 95 Rita Craveiro, Francisca Mano, Alexandre Paiva, and Ana Rita C. Duarte

6.1 (Introduction) DES in Nature 95

6.2 Honey 97

6.2.1 Behind Beehive: How Honey is Really Produced? 98

6.2.2 Honey and Its Properties 99

6.2.3 Honey as the First THEDES 99

6.3 Maple Syrup: How is Maple Syrup Produced? 100

6.3.1 Maple Syrup Nutraceutical Value 101

6.3.2 Maple Syrup and NADES 102

6.4 Sugar Beet 102

6.5 Resurrection Plants 106

6.6 Summary and Conclusions 107

Abbreviations 107

Acknowledgments 108

References 108

7 Organic Synthesis in DESs 111 Filippo M. Perna, Paola Vitale, and Vito Capriati

7.1 Introduction 111

7.2 DESs in Organocatalysis 112

7.3 DESs in the Synthesis of Heterocycles 116

7.3.1 Synthesis of Nitrogen‐ or Nitrogen‐ and Oxygen‐Containing Rings in DESs 117

7.3.2 Synthesis of Thiophenes in DESs 119

7.3.3 Synthesis of Benzo‐Condensed Rings in DESs 120

7.4 Multicomponent Reactions in DESs 123

7.4.1 Multicomponent Reactions in the Synthesis of Heterocycles 123

7.4.2 Synthesis of Betti Bases in DESs 128

7.4.3 Ugi and Passerini Reactions 128

7.5 Miscellaneous Transformations in DESs 129

7.6 Conclusion and Perspective 130

Abbreviations 131

References 132

8 DES as Catalyst 135 Mehran Shahiri‐Haghayegh and Najmedin Azizi

8.1 Introduction 135

8.2 DES Promoted Organic Transformations 136

8.2.1 Fischer Indole Synthesis 136

8.2.2 Carbon–Carbon Bond Formation 138

8.2.3 Synthesis of Pyrroles 141

8.2.4 Oxidation Reactions 141

8.2.5 “Green” Multicomponent Reactions 142

8.2.5.1 Isocyanide‐Based MCRs 143

8.2.5.2 Mannich‐Type Reactions 144

8.2.5.3 Biginelli Reaction 147

8.2.5.4 Synthesis of Chromene, Pyran, and Spiroxindole Derivatives 149

8.2.5.5 Multicomponent Synthesis of Pyrrole and Pyrazole 149

8.2.5.6 Synthesis of Quinazoline 153

8.2.5.7 A3‐Coupling Reaction 153

8.3 Desulfurization of Fuels 154

8.3.1 Olefin Alkylation of Thiophenic Sulfur 155

8.3.2 Oxidative Desulfurization of Fuels 156

8.4 Biodiesel Production 157

8.4.1 Transesterification of Triglycerides 158

8.4.2 Esterification of Free Fatty Acids 159

8.4.3 Hydrolysis/Dehydration of Carbohydrates 160

8.5 CO2 Chemical Fixation 161

8.6 Chemical Recycling of Polymers 163

8.7 Epoxy Resin Crosslinking 165

8.8 Supramolecular Macrocyclic Host Synthesis 166

8.9 Conclusion 166

References 167

9 Metal‐Promoted Organic Transformation in DES 171 Cristian Vidal and Joaquin Garcia‐Alvarez

9.1 Introduction 171

9.2 Design of New Synthetic Sustainable Organic Procedures Coupling Deep Eutectic Solvents and Highly‐Polarized Organometallic Reagents (RLi and RMgX) 173

9.3 Transition‐Metal‐Catalyzed Organic Reactions in Deep Eutectic Solvents 177

9.3.1 Palladium Catalyzed C–C Coupling Reactions in DESs 177

9.3.2 Ruthenium Catalyzed Isomerization of Allylic Alcohols and Design of One‐Pot Tandem Reactions in DESs 179

9.3.3 Gold Catalyzed Cycloisomerizations of Unsaturated Organic Substrates in DESs 180

9.4 Summary and Conclusions 181

Abbreviations 182

Acknowledgments 182

References 183

10 Polymerizations 187 Josue D. Mota‐Morales

10.1 Introduction 187

10.2 Deep Eutectic Solvents and Green Chemistry 188

10.3 The Role of Deep Eutectic Solvents in Polymerizations 189

10.3.1 Polymerizations Carried Out in Deep Eutectic Solvents 189

10.3.2 Polymerization of Monomers Containing Deep Eutectic Solvents: DES Monomers 191

10.3.3 DES as Cosolvents and Auxiliaries in Polymerizations 192

10.3.4 Cooperative Hydrogen Bonding Network of Water Added to DESs 194

10.4 Mechanisms of Polymerization Explored 194

10.4.1 Polycondensation 194

10.4.2 Free‐Radical Polymerization 197

10.4.3 Ring Opening Polymerization 207

10.4.4 Other Mechanisms of Polymerizations 209

10.5 Outlook and Future Directions 210

Abbreviations 212

References 212

11 Extraction of Bioactive Compounds 217 Mohamad H. Zainal‐Abidin, Maan Hayyan, Gek C. Ngoh, Won F. Wong, and Adeeb Hayyan

11.1 Introduction 217

11.2 The Main Features of DESs as an Extractive Agent 218

11.2.1 Effect of Water Addition on Extraction Efficiency 219

11.3 DESs in the Bioactive Compound Extractions 221

11.3.1 Phenolic Compounds 222

11.3.1.1 Flavonoid Compounds 225

11.3.2 Polysaccharides 226

11.3.3 Proteins 227

11.3.4 Hydrophobic Compounds 228

11.4 Summary 230

Abbreviations 230

References 231

12 Processing of Biomass in Deep Eutectic Solvents 235 Miao Zuo, Xianhai Zeng, Yong Sun, Xing Tang, and Lu Lin

12.1 Introduction 235

12.2 Chemical Process of Products Extraction from Biomass in DESs 235

12.2.1 Extraction and Solubility of Lignocellulose in DESs 235

12.2.2 Value‐Added Products Extraction from Biomass in DESs 238

12.3 Modification of Cellulose in DESs 240

12.4 Catalytic Conversion of Carbohydrates in DESs 242

12.4.1 Catalytic Conversion of Carbohydrates in Neat DESs 242

12.4.2 HMF Production from Carbohydrates in Bio‐Based DESs 244

12.4.3 Carbohydrates Dehydration in Biphasic DES/Organic Solvent Systems 246

12.4.4 Carbohydrates Dehydration to Other Value‐Added Products in DESs 249

12.5 Conclusions and Prospects 251

Abbreviations 252

Acknowledgments 252

References 253

13 Enzyme Catalysis: In DES, with DES, and in the Presence of DES 257 Pablo Dominguez de Maria, Nadia Guajardo, and Selin Kara

13.1 DESs as “Non‐Conventional Media” and “Non‐Conventional Solutions” for Biocatalysis 257

13.2 Hydrolases and Deep Eutectic Solvents 259

13.3 Oxidoreductases and Deep Eutectic Solvents 264

13.4 Other Biocatalytic Concepts in Deep Eutectic Solvents 266

13.5 Conclusions 267

Abbreviations 268

References

268

14 Nanoscale and Functional Materials 273 Diego A. Alonso, Alejandro Baeza, Rafael Chinchilla, Cecilia Gomez, and Isidro M. Pastor

14.1 Introduction 273

14.2 Nanoparticulated Materials 274

14.3 Nanofilms and Nanolayers 282

14.4 Carbonaceous Materials 283

14.5 Porous Materials 287

14.6 DNA Manipulation 290

14.7 Summary and Conclusions 291

Abbreviations 292

References 292

15 Carbon Dioxide Capture 297 Yingying Zhang, Xiaohua Lu, and Xiaoyan Ji

15.1 Introduction 297

15.2 Properties of DESs 299

15.2.1 Thermophysical Properties 299

15.2.1.1 Gas Solubility 299

15.2.1.2 Viscosity 305

15.2.1.3 Molar Heat Capacity 309

15.2.2 Kinetic Property 312

15.3 Screening and Evaluation of DESs for CO2 Separation 313

15.3.1 Property‐Based Method 313

15.3.2 Thermodynamic Analysis‐Based Method 313

15.3.3 Process Simulation‐Based Method 314

15.4 Further Conversion with DESs 314

15.5 Conclusions 314

Abbreviations 315

References 316

16 DES‐Mediated Approaches Toward Green Analytical Chemistry 321 Federico J.V. Gomez, Magdalena Espino, Maria de los A. Fernandez, Joana Boiteux, and Maria F. Silva

16.1 Introduction 321

16.2 Extraction Techniques and Deep Eutectic Solvents 323

16.2.1 Ultrasound Assisted Extraction (UAE) 324

16.2.2 Microwave Assisted Extraction (MAE) 325

16.2.3 Liquid Phase Microextraction (LPME) 325

16.2.4 Solid Phase Microextraction (SPME) 326

16.3 Separation Techniques and DES 326

16.3.1 Gas Chromatography and DES 327

16.3.2 Liquid Chromatography and DES 327

16.3.3 Capillary Electrophoresis and DES 328

16.4 DES Detection Techniques Compatibility 328

16.5 Future Trends and Challenges for Green Solvents in Analytical Chemistry 330

Abbreviations 331

Acknowledgments 332

References 332

17 Electrochemistry 335 Zhimin Xue, Wancheng Zhao, and Tiancheng Mu

17.1 Introduction 335

17.2 Conductivity 336

17.3 Electrochemical Stability 347

17.4 Electrochemical Applications 350

17.4.1 Electrodeposition 350

17.4.2 Electropolishing 357

17.5 Summary and Conclusions 359

Abbreviations 359

Acknowledgments 360

References 360

Index 363

▲ページトップへ