電子書籍詳細

電子書籍詳細


洋書 kinoppy

触媒固定化:手法と応用

Catalyst Immobilization : Methods and Applications

1

Benaglia, Maurizio (EDT)   Puglisi, Alessandra (EDT)

Wiley-VCH 2019/12
496p.
出版国: DE
ISBN: 9783527345090
eISBN: 9783527817276
KNPID: EY00370401
販売価格 : BookWeb Pro特別価格

価格はログインすると表示されます。
為替レートの変動や出版社の都合によって、価格が変動する場合がございます。
ファイルフォーマット:   
ファイルサイズ:
デバイス:

ご購入を希望される方は、
下のリンクをクリックしてください。

Full Description

A comprehensive resource on techniques and applications for immobilizing catalysts

Catalyst Immobilization: Methods and Applications covers catalyst immobilization topics including technologies, materials, characterization, chemical activity, and recyclability. The book also presents innovative applications for supported catalysts, such as flow chemistry and machine-assisted organic synthesis.

Written by an international panel of expert contributors, this book outlines the general principles of catalyst immobilization and explores different types of supports employed in catalyst heterogenization. The book?s chapters examine the immobilization of chiral organocatalysts, reactions in flow reactors, 3D printed devices for catalytic systems, and more. Catalyst Immobilization offers a modern vision and a broad and critical view of this exciting field. This important book:

-Offers a guide to supported and therefore recyclable catalysts, which is one of the most important tools for developing a highly sustainable chemistry
-Presents various immobilization techniques and applications
-Explores new trends, such as 3D printed devices for catalytic systems
-Contains information from a leading international team of authors

Written for catalytic chemists, organic chemists, process engineers, biochemists, surface chemists, materials scientists, analytical chemists, Catalyst Immobilization: Methods and Applications presents the latest developments and includes a review of the innovative trends such as flow chemistry, reactions in microreactors, and beyond.

Table of Contents

Preface xiii

1 Strategies to Immobilized Catalysts: A Key Tool for Modern Chemistry 1
Oriana Piermatti, Raed Abu-Reziq, and Luigi Vaccaro

1.1 Introduction 1

1.2 Catalysis 3

1.3 Heterogenization of Homogeneous Catalysts 3

1.3.1 Immobilization on Silica 4

1.3.1.1 Covalent Binding 6

1.3.1.2 Physical Entrapment 7

1.3.1.3 Electrostatic Interactions 7

1.3.1.4 Silica Microencapsulation 7

1.3.2 Polymeric Supports 9

1.3.2.1 Insoluble Polymers 10

1.3.2.2 Soluble Polymers 10

1.3.2.3 Polymeric Microcapsules 12

1.3.3 Other Supports 13

1.3.3.1 Metal–Organic Frameworks (MOFs) 13

1.3.3.2 Periodic Mesoporous Organosilicas (PMOs) 14

1.3.3.3 Magnetic Nanoparticles 14

1.3.3.4 Membranes 14

1.4 Characterization of Heterogeneous Catalysts 15

1.5 Conclusions 16

List of Abbreviations 16

References 17

2 Catalysts Immobilized onto Polymers 23
Shinichi Itsuno and Naoki Haraguchi

2.1 Introduction 23

2.2 Organocatalyst Immobilized onto Polymers 24

2.2.1 Polymer-Immobilized Cinchona Alkaloids 24

2.2.2 Polymer-Immobilized Proline Derivatives 30

2.2.3 Polymer-Immobilized Amino Acids 33

2.2.4 Polymer-Immobilized Pyrrolidine Derivatives 35

2.2.5 Polymer-Immobilized Chiral Amines 39

2.2.6 Polymer-Immobilized MacMillan Catalysts 42

2.2.7 Polymer-Immobilized Thioureas and Ureas 50

2.2.8 Polymer-Immobilized Chiral Phosphoric Acids 53

2.2.9 Polymer-Immobilized Chiral N-Heterocyclic Carbenes 55

2.3 Metal Catalysts Immobilized onto Polymers 56

2.3.1 Al: Polymer-Immobilized Catechol–Al Catalyst 56

2.3.2 Au: Polymer-Immobilized Triazole–Gold Catalyst 56

2.3.3 Co: Polymer-Immobilized Co(III)–Salen Complex 57

2.3.4 Ir: Polymer-Immobilized Iridium Catalyst 58

2.3.5 Mo: Polymer-Immobilized Molybdenum Catalyst 60

2.3.6 Ni: Polymer-Immobilized Ni Catalyst 61

2.3.7 Pd: Polymer-Immobilized Pd Catalyst 62

2.3.8 Pt: Polymer-Immobilized Pt Nanoparticle 64

2.3.9 Rh: Polymer-Immobilized Rh Catalyst 65

2.3.10 Ru: Polymer-Immobilized Ru Catalyst 68

2.3.11 Ti: Polymer-Immobilized Ti Catalyst 69

2.3.12 Zn: Polymer-Immobilized Zn Catalyst 70

2.4 Outlook and Perspectives 71

2.5 List of Abbreviations 71

References 72

3 Modified Nanocarbons as Catalysts in Organic Processes 77
Vincenzo Campisciano, Michelangelo Gruttadauria, and Francesco Giacalone

3.1 Introduction 77

3.2 Fullerene-Based Catalysts 78

3.2.1 Organocatalysis 78

3.2.2 Organometallic Catalysis 82

3.3 Carbon Nanotubes-Based Catalysts 87

3.3.1 Supramolecular Functionalization 88

3.3.2 Covalent Functionalization 92

3.3.2.1 Organocatalysis 92

3.3.2.2 Organometallic Catalysis 93

3.4 Graphene-Based Catalysts 99

3.4.1 Supramolecular Functionalization 100

3.4.2 Covalent Functionalization 102

3.4.2.1 Organocatalysis 102

3.4.2.2 Organometallic Catalysis 105

3.5 Outlook and Perspectives: Conclusions 109

List of Abbreviations 110

References 111

4 Stereoselective Synthesis by Catalysts Supported on Magnetic Nanoferrite 115
Alessandro Ponti, Anna M. Ferretti, and GiorgioMolteni

4.1 Introduction 115

4.2 Structure and Properties of the Nanocatalysts 117

4.2.1 Structure Types 118

4.2.1.1 MNP and Catalyst 118

4.2.1.2 Structure Type I 119

4.2.1.3 Structure Type II 121

4.2.1.4 Other Structure Types 122

4.2.2 A Few Points About Synthesis 123

4.2.3 Magnetic Recovery 126

4.2.4 Recycling 128

4.3 Characterization of the Nanocatalysts 129

4.3.1 Morphology and Crystal Structure 130

4.3.2 Magnetic Properties 131

4.3.3 Identification of the Supported Species 132

4.3.4 Catalyst Loading and Leaching 135

4.3.5 DLS and Z-potential 136

4.4 Stereoselective Reactions 137

4.4.1 Substitutions 138

4.4.2 Condensations 139

4.4.3 Additions 141

4.4.4 Hydrogenations and Reductions 146

4.4.5 Epoxidations and Oxidations 148

4.4.6 Carbon–Carbon Couplings 150

4.4.7 Kinetic Resolution of Racemic Mixtures 151

4.5 Conclusions 154

References 154

5 Metal–Organic Frameworks as Catalysts 159
Pillaiyar Puthiaraj and Wha-Seung Ahn

5.1 Introduction 159

5.2 Open Metal Sites as Reaction Sites 159

5.3 Organic Linkers in the Frameworks as Reaction Sites 162

5.3.1 Single-Linker MOFs 163

5.3.2 Mixed Linker MOFs 164

5.4 Multifunctional MOFs for Catalysis 166

5.5 Post-synthetic Grafting of Active Guest Species within MOFs 167

5.5.1 Grafting of Active Organic Species on Open Metal Sites 167

5.5.2 Grafting of Active Functional Groups on Organic Linkers 168

5.5.3 Grafting of Active Metal Complexes on Functionalized Organic Linkers 170

5.6 Encapsulation of Catalytically Active Guest Species Inside MOFs 173

5.6.1 Metal/Metal Oxide Nanoparticles on MOFs 173

5.6.2 Polyoxometalates (POMs) 175

5.6.3 Metalloporphyrins 176

5.7 MOF Membranes for Catalysis 177

5.8 Conclusions and Perspectives 182

Acknowledgments 182

References 183

6 Alternative Solvent Systems in Catalysis 187
Xavier Marset, Diego J. Ramón, and Gabriela Guillena

6.1 Introduction 187

6.2 Ionic Liquids as Solvents for Catalytic Organic Reactions 189

6.2.1 Transition-Metal Promoted Reaction in Ionic Liquids 189

6.2.2 Organocatalyzed Transformations Using Ionic Liquids 195

6.3 Deep Eutectic Solvents (DES) as Reaction Media in Catalysis 199

6.3.1 Non-innocent DES as Reaction Media 201

6.3.2 DES as Innocent Solvents for Recyclable Catalytic Transformations 205

6.3.2.1 Transition-Metal Catalyzed Processes 205

6.3.2.2 Organocatalyzed Reactions 207

6.4 Conclusion 211

List of Abbreviations 211

References 212

7 Immobilized Chiral Organocatalysts 217
Carles Rodríguez-Escrich

7.1 Introduction 217

7.2 Immobilized Chiral Aminocatalysts 219

7.2.1 Proline Derivatives 219

7.2.2 Diarylprolinol Derivatives 223

7.2.3 Imidazolidinones 227

7.2.4 Primary Amine Organocatalysts 230

7.2.5 Peptide Catalysts 233

7.3 Immobilized Chiral H-Bond Donors 235

7.3.1 Ureas and Thioureas 235

7.3.2 Squaramides 238

7.3.3 Amides and Sulfonamides 240

7.4 Immobilized Chiral Phosphoric Acids 241

7.5 Immobilized Lewis and Brønsted Base Organocatalysts 244

7.5.1 NHC Catalysts 245

7.5.2 Isothioureas 245

7.5.3 Amides as Lewis Bases 247

7.5.4 Brønsted Bases 247

7.6 Immobilized Phase Transfer Catalysts 249

7.7 Final Remarks and Future Perspectives 250

References 251

8 Catalyst Recycling in Continuous Flow Reactors 257
Alessandro Mandoli

8.1 Introduction 257

8.2 Types of Catalytic Flow Reactors and Parameters for Assessing Their Performance 259

8.3 Soluble Catalytic Systems 260

8.3.1 Metal Catalysts 263

8.3.1.1 Organic Solvent Nanofiltration 263

8.3.1.2 Liquid–Liquid Biphasic Media and Supercritical Fluids 269

8.3.1.3 SLP Systems 273

8.3.1.4 Other Approaches 276

8.3.2 Metal-Free Catalysts 276

8.4 Insoluble Catalytic Systems 277

8.4.1 Packed-bed CFRs 281

8.4.2 Monolithic CFRs 282

8.4.3 Wall-coated CFRs 284

8.4.4 Metal Catalysts 285

8.4.4.1 Reduction Reactions 285

8.4.4.2 Cross-Coupling Reactions 289

8.4.5 Metal-Free Catalysts 290

8.5 Conclusions 293

List of Abbreviations 294

References 295

9 Membrane Reactors 307
Parisa Biniaz, Mohammad Amin Makarem, and Mohammad Reza Rahimpour

9.1 Introduction 307

9.2 Inert Membrane Reactor with Mobile Catalysts on the Reaction Side 308

9.2.1 Organic Solvent Nanofiltration 309

9.3 Catalytically Active Membrane Reactors 311

9.3.1 Hydrogenation Reactions 311

9.3.2 Carbon–Carbon (C–C) Cross-couplings 312

9.4 The Immobilized Catalyst in a Porous Membrane 313

9.5 Photocatalytic Organic Synthesis and Their Utilization in the Reduction of Organic Pollutant in Membrane Reactors 313

9.5.1 Photocatalytic Membrane Reactors 314

9.5.2 Membrane Reactors with Suspending Catalyst in the Reaction Mixture 314

9.6 The Applications of Membrane Reactors in the Biodiesel Transesterification 316

9.7 Conclusion and Future Trends 320

List of Abbreviations 320

References 321

10 Development of Polymer-Supported Transition-Metal Catalysts and Their Green Synthetic Applications 325
Takao Osako, Atsushi Ohtaka, and Yasuhiro Uozumi

10.1 Introduction 325

10.2 Polystyrene-Supported Transition-Metal Nanoparticle Catalysts 326

10.2.1 Background 326

10.2.2 Carbon–Carbon Coupling Reactions in Water Catalyzed by Linear-Polystyrene-Stabilized Palladium(II) Oxide or Palladium Nanoparticles 327

10.2.2.1 Suzuki Coupling Reaction 327

10.2.2.2 Hiyama Coupling Reaction 330

10.2.2.3 Ullmann Coupling Reaction 333

10.2.2.4 Heck Reaction 334

10.2.2.5 Copper-Free Sonogashira Coupling Reaction 335

10.2.2.6 One-Pot Synthesis of Dibenzyls and 3-Arylpropanoic Acids 337

10.2.3 Linear-Polystyrene-Stabilized Platinum Nanoparticles: Preparation and Evaluation of Their Catalytic Activity in Water 338

10.2.3.1 Aerobic Oxidation of Alcohols 338

10.2.3.2 Hydrogen-Transfer Reduction in the Presence of Polystyrene-Stabilized Platinum Nanoparticles 340

10.3 Polystyrene-Poly(ethylene glycol)-Supported Transition-Metal Catalysts 341

10.3.1 Background 341

10.3.2 Aqueous Aerobic Flow Oxidation of Alcohols by Amphiphilic Resin-Dispersed Particles of Platinum (ARP-Pt) 342

10.3.3 Flow Hydrogenation of Olefins, Nitrobenzenes, and Aldehydes by Amphiphilic Resin-Dispersed Particles of Platinum (ARP-Pt) 349

10.3.4 Flow Hydrogenation by Amphiphilic Resin-Dispersed Particles of Iron (ARP-Fe) [110] 352

10.3.5 Aqueous Huisgen 1,3-Cycloaddition with an Amphiphilic Resin-Supported Triazine-Based Polyethyleneamine Dendrimer–Copper Catalyst 356

10.3.6 Aqueous Asymmetric 1,4-Addition with an Amphiphilic Resin-Supported Chiral Diene–Rhodium Complex 359

10.4 Conclusion 363

List of Abbreviations 363

References 364

11 3D Printed Devices for Catalytic Systems 369
Vittorio Saggiomo

11.1 Introduction 369

11.2 3D Printing 371

11.2.1 Fuse Deposition Modeling (FDM) 373

11.2.2 Millifluidic and Flow Reactors 374

11.2.3 Catalysts Embedded Thermoplastics 376

11.2.4 Resin Printers 382

11.2.5 Robocasting (Direct Ink Writing) 388

11.2.6 Powder Bed Fusion Printers 396

11.3 Conclusion 399

11.4 Outlook 402

List of Abbreviations 402

References 403

12 General Overview on Immobilization Techniques of Enzymes for Biocatalysis 409
María Romero-Fernández and Francesca Paradisi

12.1 Introduction 409

12.2 Physical Immobilization Methodologies 410

12.2.1 Entrapment 411

12.2.2 Encapsulation 411

12.3 Chemical Immobilization Methodologies 413

12.3.1 Non-covalent Bonding 413

12.3.1.1 Hydrophobic Adsorption 414

12.3.1.2 Ionic Exchange Adsorption 415

12.3.2 Covalent Bonding 418

12.4 Conclusion 426

List of Abbreviations 426

References 427

13 Immobilized Enzymes: Applications in Organic Synthesis 437
Hans-Jürgen Federsel, Jaan Pesti, and Matthew P. Thompson

13.1 Introduction: The Quest for Chemicals and the Role of Organic Synthesis 437

13.2 Enzymes as Enablers of Synthesis 441

13.3 Enzymes in Action: Immobilized Processes on Scale 444

13.4 Key Features of Systems Operating with Immobilized Enzymes 452

13.5 Future Perspectives: The Road Ahead 457

List of Abbreviations 459

References 460

Index 465